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FOREWORD 

The Life Sciences Research Office (LSRO).  Federation of American 
Socneties for Experimental Biology (FASEB). provides scientific assessments 
of topics in the biomedical sciences.    Reports are based upon comprehensive 
literature reviews and the scientific opinions of knowledgeable investigators 
engaged ir; research in specific areas of biology and medicine.   In addition. 
L. RO utilizes special consultants to prepare reports on specific topics 
v/h-re their expertise is applicable to particular needs for review and 
analysis. 

™-       T!1? teCllrncal rePort was Prepared for the Human Resources Research 
O.fice    Defense Advanced Research Projects Agency (DARPA).  Department 
of Defense,  under contract number F44620-74-C-0077 monitored by the Air 
Force Office of Scientific Research. 

Under terms of the contract.  LSRO agreed to assess recent develop- 
ments in research on cellular mechanisms in learning and behavior because 
these have emerged as a central issue in neurobiology over the past two 
decades.    Cellular processes at the synapses and protein metabolism within 
certain neural cells appear to be critical to learning, memory,  and behavior. 
In the course of this study.  LSRO staff had the opportunity to hear Dr. Sven 
A.  Bach. M.D. present his hypothesis on biochemical synchrony of groups 
of neurons during learning and memory formation.    Because the approach 
represents a novel concept of neural integration at the cellular level 
Dr    Bach was asked to prepar- a review of his hypothesis 3o a report to 
DARPA under terms of the LSRO contract. 

This report was written by Dr.  Bach who served as a special con- 

h     r^Jo A? 
f0r thiS StUdy'   The rep0rt h£S been revie^d ^nd approved 

by the LSRO Advisory Committee (which consists of representatives of each 
constituent society of FASEB) under authority delegated by the Executive 
Committee of the Federation Board.   Upon completion of these review 
procedures, the report has been approved and transmitted to DARPA bv the 
Executive Director.  FASEB. "y me 

While this is a report of the Federation of American Societies for 
Experiments Biology, it does not neces urily reflect the opinion of all of 
the individual members of its constituent societies. 

C Jelleff Carr.  Ph. D. 
Director 
Life Sciences Research Office 

r^j-a 



SUMMARY AND CONCLUSIONS ON PRESENT STATUS OF KNOWLEDGE 

It seems that many degrees of persistence of memory can be demon- 
strated. Some memories are fleeting and delicate, others solidly ensconced 
and persistent. 

Despite the immense effort that has gone into establishing electro- 
physiological, anatomical,  biochemical and behavioral correlates of learning 
and memory, thus far no clear basis has emerged. 

Very few workers today entertain seriously the idea of a memory 
trace laid down in the strut vure of specific molecules. 

Many biochemical changes have been shown to accompany the neural 
functioning that proceeds as memories are laid down,  and many agents, 
physical and chemical,  can disrupt the process.   It In clear only that learning 
and memory require normal neural functioning and that interference with 
this functioning is variously effective depending on the timing and the severity 
of the disrupting input. 

The distinction between short-term and long-term memory may be an 
artificial one. 

"Switchboard"   and "aggregate-field" hypotheses of neural integration 
may not be mutually exclusive.   The former may represent rapid message- 
handling in "permanent" circuits, the latter may represent biochemical 
rhythms which reflect processes that may go to any degree of completion. 

The notion that the brain handles messages by "digital" versus 
"analog" techniques may also be a distinction artificially imposed by the 
techniques and nature of the instruments used to study these processes. 
The brain operates biochemically in time domains of about 10-3 to 106 

seconds, or even much longer if a lifetime is considered.    Neural events 
occupy every portion of this spectrum. 

One of the events involved in intraneuronal message transfer may be 
pumping of lattice-vibrational states by signals pv'sed to match the relaxa- 
tion times of such states.   The energy levels attainable can in turn match 
those required for conformational changes in macromolecules. 

Intracellular processes are poorly understood but may play an 
equal or larger role in neural functioning than events measurable across the 
cell membrane.    Almost nothing is known of early, time-variable concentra- 
tions of metabolic intermediates, metabolites and secretorv products of neurons 
during learning. 

-   5 Preceding page blank 
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It may be impossible to dissociate learning from stimulation in 
any meaningful way.   A wild rat is learning with every new experience. 
How this process may be biochemically related to the process of learning 
to prevent its feet from being shocked in a Skinner box may be difficult to 
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I.    INTRODUCTION 

With the current state of knowledge it is impossible to present a 
complete hypothesis of the integrative neural processes for the acquisition 
storing and retrieval of memories.   However, when one studies the various 
current views of these events, there remains the nagging belief that there 
DUWt be some unifying principle which could bring together the diverse 
opinions represented by the "cellular-connection" or "switchboard-model" 
theories of neural integration on the one hand and the "aggregate field" 
hypotheses on the other (John.   1972; Kandel and Spencer.   1968. 
Sommerhof   1974).   These models are not necessarily mutually delusive 
but simply focus on different properties of the nervous system.    While no' 
such principle is proposed, an examination of some of the experimental data 
and the models of neuronal function in a temporal frameworkmight a d in 
constructing a future scheme for unifying current hypotheses. 

As indicated by the title,  the emphasis is on learning and memorV 

by which is meant the acquiring by the animal organism of new behavioral 
patterns appropriate to new situations and their retention and recall as 
evidenced by appropriate behavior when again faced with the same    an 
analogous, or a related set of stimuli. 

The dynamic features of this process will be stressed and the 
described events placed into their particular time domains.    This will help 
to correlate biochemical, electrophysiological.  behavioral and anatomical 
changes in such a way that their interrelationships can be sorted out on a 
reasonable causal basis.   Whatever may be the theoretical views of neural 

maTchth"     h"1^ K^ 
mUSt a11 be POSSible W;chin the stated times and match the observed behavior. 

This report is not intended to be an exhaustive review.    Many excel- 
irlh       TH 

dliferent.asPects ™ -ailable and are indicated in the bibHo 
I ^ Jue ;.lscusslon is limited to well-documented experimental reeulti 

which will be fitted into an interpretation of memory as a dynamic proc^l 
involving many different hierarchical levels from moleculerto the whole 
orgamsm.   Memory is to be viewed as a set of biological events highly 
spec.fic in sequence, both in space and time. y 

-  9  - Preceding p^e blank 
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II.    OBSERVATIONS ON MAN 

To form a memory, a stimulus (or group of stimuli) must be perceived. 
The beginning of a memory must coincide with the beginning of perception. 
There is considerable evidence that regardless of physical mode of the 
stimulus,  its perception by the human begins about 70 milliseconds after 
its onset (Efron, 1967; Gibbon and Rutschmann, 1969). 

There seems to be a general agreement that there are at least two 
kinds of memory in man, a short-term and a long-torm one.   The former 
may decay over a period of seconds to hours,  and the latter, after "consoli- 
dating" over a number of hours,  days or even years may persist in a more 
or less permanently available "store. "   Experimental and clinical evidence 
in man indicates, however, a complete gamut in time of the memory store. 
Thus, very short-term memory,  decaying in a few seconds has been docu- 
mented (Lunney, 1974; Wingfield and Byrnes, 1972),    In patients with severe 
recent memory deficit following bilateral hippocampal lesions, retention of 
three-figure numbers or pairs of i'nrelated words was possible for several 
minutes,  provided the patient's attention was not diverted from the task. 
However,  these patients suffered a major, permanent inability to learn 
anything new (Scoville and 'A/Iilner, 1957; Smythies, 1970a).   There is some 
evidence, though, that nonverbal tasks might still be learnable (Ervin and 
Anders,  1970). 

Extensive lesions involving one cerebral hemisphere before or 
during childhood development can be removed by extirpation of the entire 
hemisphere with surprisingly few serious effects on either verbal or non- 
verbal learning.   In an adult with already established skills, a lesion which 
involves the brain subsequent to their acquisition is a more serious matter 
and shows the effect of specialization,  the left side predominating as to 
language skills,  and the right as to visual ideational, non-verbal reasoning 
and constructional skills.   Considerable variability exists in the degree of 
such specialization (Burklund,  1972; Smith,  1972). 

Patients subjected to electroconvulsive therapy (ECT) lose their 
ability to recognize one-season TV series up to 3 years before treatment, 
but programs aired before that time (4 to 17 years) are recalled just as well 
as by controls.   The equally well-remembered material decays from then 
on at the same rate in both groups (Squire, 1975).    It thus appears that 
consolidation for this sort of material takes place over several years. 
Epileptogenic foci in the temporal lobe often evoke an aura of very complex 
and highly vivid content which reconstructs past experience in detail.    Direct 
stimulation of this region (the lateral,  anterior and inferior lemporal cortex) 
during surgery can reproduce the memory.     Often the remembered episode 

11 Preceding page blank 
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roulh th nS !timulatl0n is continued.   The patient reports that even 
ough the recollect1on is clear and vivid, it is recognized as extraneous to 

he lmm«dUt« surroundtngs with which he remains fully in contact during 
the procedure (Penfield. 1958). K 

Language production (which must of necessity involve recall) is 
preceded by slow.negative potentials recorded at their maximum over the 
foot of the left frontal convolution of the cerebral cortex (Broca's area) 
These potentials precede the articulation of th. words by about one second 
(  reaomess potenUal' ).   This is before the actual "voice trigger" which is 

aVdarWhitPa0
k

Seri9P7i;!ntial aCCOmpan^ the aCtual vocalization (McAdam 

ter of random^?1^160^0'"06^310^^3 0ften Seem to have the ch^ac- 
hVl T T      '      ere lS general agreement that definite rhythms can 
be observed and are consistent enough to be classified and studied *  Auto- 
correlatxon and spectral analyses have revealed many subtleties in the fre- 
quency components (Thompson and Patterson.  1974).   Highly pertinent to 
the present paper is the study of an adult human whose "idling" electro 
encephalographic (EEG) pattern was Gaussian 66 percent of the time     Durin. 

aG ^""H
0
' 

a mental arithmetiC taSk' the P-'- *£ reco^Lv^g    g 
a Gaussian character dropped to half of that oercentaap   iwi g 

in .he cooperative acUvi./of corHcal „euron'J e.e™ ^ ÄÄST 
ance of the task (EM. 1969). Many other electroencephalograohtc correlaTe, 

.957T"? ^ ^ ^T* PerCepti0n haVe been "~^ (Gasthau 

Human memory must then be thought of as a process (or processes) 

a„H?H T,    , T'^ Within ab0m 70 m"»-conds of the onset of a stTmufus 

^r.^rAÄ*.minu,es'hours or years dependi,ig on how the 

'In 1958 I observed but did not publish the fact that electrodes olaced in . 

:re1:1 :"o
an

,c
E

he
E
^G'7, ^produc;,a ^■eat vari^of ^ÄXX 

orthTnlor near tt p^SJ^^JZ Z !*?£? 5 Walking ^ *n Qri^       . Preparation.    The normal activity of chimnanzees in 

recordT   "" "" ""' ^ "^ * rand0m Set 0f »Ä^ 
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III.    EXPERIMENTAL MODELS:   BRAIN STRUCTURE AND ORGANIZATION 

Mammalian studies relating brain function and learning form a vast 
literature.   Only a few of the structures implicated and enough of the syn- 
aptic organization and function are reviewed to highlight the temporal relation- 
ships. 

Neurons are cc.^ected by every conceivable combination of junction, 
varying from several type ! of membrane juxtaposition to synapses operating 
through chemical transmit!ers.    These may be axodendritic,  axosomatic, 
axoaxonic of dendrodendril ic and arranged singly,  reciprocally or serially. 
The synaptic vesicles whici. contain the transmitter substances are either 
small (20 to 40 nm in diameter; or medium sized (50 to 90 nm),  the former 
probably associated with acetylcholine and certain amino acid transmitters, 
the latter with mrephinephrine (DeFeudis, 1975; Shepherd,  1974a).   A 
typical synaptic cleft could be represented by a flat cylinder of 1 nm radius, 
50 nm thick, and therefore with a volume of 1. 6 x 10"16 liters, which provides 
room for about six H3 0+ ions atapH of 7.2. 

The total nu-nber of neurons in the human brain is cften said to be 
10      (Griffith, 1971).   However, the number of granule cAls in the cerebellum 
alone is four times this.   The degree of convergence of inputs upon single 
neurons can be very great.   Purkinje cells in the cerebellum for example 
have more than 100, 000 dendritic spines, each connecting with an individual 
granule cell (Shepherd, 1974b; 1974c). 

Action potentials, typically pulsed signals in the millisecond range, 
of 50 to 150 mv are the presynaptic signal traveling down an axon at rates 
of one to one hundred meters per second.   Such impulses are associated 
with an inward sodium current and a slightly delayed and more prolonged 
outward potassium current (Hodgkin and Huxley, 1952).   The Na+ and K+ 

exchange is supposed to be restored by ionic pumps.   The initial event, 
the alteration in conductance to the two ions, has been consigned thus to 
the membrane.   Just how the membrane does this is a puzzle.    Some cells 
spontaneously generate impulses (the pacemaker potential).   This intrinsic 
rhythm is supposed to be a property of the membrane, but is little under- 
stood (Shepherd, 1974d).   These signals may be considered part of a pulse- 
coded system and are characteristic of many regions of the nervous system. 
They are often used as models of information transfer by the cyberneticists 
and are susceptible to highly sophisticated mathematical treatments (Griffith 
1971; Wiener, 1948a). 

13 

- 



In contrast to the digitally coded responses just mentioned, other 
areas process information as analogs.   This is true of the retina, which 
performs the ultimate feat by converting an extremely high-frequency signal 
(6 x 10      Hz for 500 nm light) to a signal usable by the brain. 

IVlany of the brain neurons in regions important to memory show 
responses which would be called "ringing" in an amplifier.   That is. the 
postsynaptic response to a presynaptic pulse is characterized by a rapidly 
decaying train of oscillations.   Thus a pulse to a thalamic sensory relay 
neuron elicits a trainat about 300/second (Shepherd.  1974e).    In a hippocampal 
pyramidal cell high-frequency bursts are seen up to 400/second (2 to 4 spikes) 
and moderate duration trains of 5 to 8 spikes at about 100/second, which 
appear to decay exponentially (Kandel and Spencer. 1961).    In the neocortex 
a similar pattern can be seen (Shepherd.  1974f). 

In contrast to the self-maintained nerve impulse which reaches its 
destination undiminished. there are electrotonic dendriti • potentials which 
spread passively.   These have been elegantly analyzed (Rail.  1970; Rail 
and Rinzel. 1973).   These can be treated by so-called cable equations either 
as steady states if slow enough,  or as transients if the time constants of 
the neuronal membrane are in the same time domain as the events.   The 
spread of electrotonus through a highly branching tree (or a converging one) 
can form the basis for an intricate network of conditional probabilities with 
a very high information content (MacKay,  1973).    If this idea is coupled with 
the ones to follow on synchronous activity in a very wide temporal range of 
oscillatory activity, there is a more than adequate basis for all of the inter- 
relationships required for acquisition,  storage,  and retrieval of highly 
complex behavioral patterns.    The basic point here to be stressed is that 
neurons are tied together by signals which can be very fast (millisecond) or 
so slow as to take on the character of steady-state potentials.    This entire 
gamut has been observed and recorded in the human brain. 

Much of the integrative activity of the brain is believed to be carried 
out in the limbic system.    Within the limbic system, the hippoC?mDl display 
? remarkable plasticity in recorded responses and in their rhythmic poten- 
tials.    In carrivores and lagomorphs a prominent 5 to 7 Hz (theta) rhythm 
is manifest.   Human hippocampal activity shows faster components.   This 
rhythm is said to be imposed through a path involving hypothalamus.  septum 
and formx by reticular formation activation.   This imposition of theta 
rhythm has been variously viewed as an inhibition of the hippocampus 
(Smythies.  1970b). a nonspecific  response  indicating general alertness and 
muscular activity (Klemm.  1972).  or a temporal correlate of memory storage 
processes (Landf,.'Id ei oi..  1972). 

In the rat. afferent stimulation via the septum produces postsynaptic 
potentials and firing in hippocampal pyramidal cells accompanied by large. 

14   - 



Standing field potentials, negative at the surface down to the pyramidal cell 
layer,  and positive deeper (apical dendritic area).    Repetitive stimulation 
leads to an evoked response which is constant at slow stimulation rates 
(<l/second) but shows facilitation at higher rates (4 to 10/second) so the 
amplitude increases.    Faster rates yet produce inhibition.    Continued 
stimulation at the optimum rates induces seizures (Izquierdo, 1972). 

Stimulation by 10/second.  0. 2 msec..  0. 2 mA pulses in the locus 
coeruleus (a pontine nucleus) of the rat results in inhibition of spontaneous 
firing in hippocampal pyramidal cells.    The response is delayed by 150 to 
200 msec, after stimulus onset and lasts 5 to 120 seconds after termination 
of stimulus.   The iontophoretic application directly to the cell of norephine- 
phnne results in inhibition with a similar long latency and persistence     Other 
ancillary pharmacological tests make it quite convincingly apparent that this 
fn^.^ lS mediated by norepinephrine terminals (Segal and Bloom.  1974a- 
1974b). ' 

In rabbits, tetanic stimulation of the perforant path evokes a mono- 
synaptically transmitted response in the dentate cortex of the hippocampal 
region.   This is a population response of granule cells and is characterized 
by synaptic potentiation which lasts from an hour up to several weeks.    This 
potentiation appears to be due to both increased synaptic efficiency between 
the perforant path and granule cells, and an increased excitability of the 
granule cells (Bliss, 1973). y 

. K-K-. Fr0m ü1!86 data tt appearS that this Portion of the liable system 
exhibits a good deal of electrophysiologically demonstrable plasticity and 

e'vrwUks"6^      ^ d0mainS ^ ^^ mÜliseconds "P * ^urs and 

I 

IS 

J 



IV.    ANATOMICAL PLASTICITY IN THE NERVOUS SYSTEM 

Implicit in a "switchboard" theory of memory is the rstablishment of 
new connections or at least their facilitation.   This is a necessary condition 
for learning paradigms involving conditioned and uncond- ioned stimuli. 
Whether all of such facilitation can be laid to changes at the synapse itself 
is another question.   It may well be that intracellular processes at least 
share in this. 

The brain exhibits modifiability in embryonic and early life.    ". 
the processes concerned, however,  remain among the most profound unsolved 
problems of biology" (Shepherd. 1974g).    It appears that early in development 
neurons may be »bl« .o connec   in a wide variety of ways, that is.  if moved 
to a new location in the embryo they will form connections appropriate to 
that location.    Later on they lose this ability and become "uniquely specified" 
(Jacobsen,  1969).   The sensory richnjss of the environment seems to be 
important in the developing brain.   In a number of experiments,  rats were 
raised in three different environments:   singly caged,  in empty cages with 
2 or 3 animals per cage and in "enriched" environments -- 10 to 12 animals 
per cage with toys.   The degree of complexity in the environment correlated 
with changes in enzymatic activity,  depth of cerebral cortex and increases 
in both wet and dry weights of cerebral cortex (Bennett et al.,  1969; Diamond 
et al.. 1964).    Rats from the enriched environment exhibited superior 
learning behavior.   Pyramidal neurons from occipital cortex in these rats 
showed an increase in the amount of dendritic material per neuron,  which 
was due to increased branching within the original,  or only slightly gr-ater 
volume.   Since the dendritic spine frequency on these branches was equal to 
or greater in   enriched" rats than in "impoverished" rats, the number of 
dendritic synapses per neuron was clearly higher in the former.    These 
changes in the developing rat were in basal dendrites.   When adult rats were 
given a set of visual discrimination tasks over a 35-day period an increased 
branching was observed in outer apical dendrites but not in the basal region 
Quantitatively,  these effects were much smaller than those seen in the 
developing brain (Greenough.  1975). 

Cats raised from birth with one eye viewing horizontal lines and 
the other viewing vertical lines showed elongations in the direction of the 
cortical receptive fields corresponding to the original restricted input 
(Hirsch and Spinelli, 1970). 

Humans with astigmatism showed a difference in resolution sensitiv- 
ities to lines oriented with or across the cylindrical axis of the optical error 
even though an optical correction had been introduced.    This tends to indi- 
cate a neural lack analogous to the results of the feline experiments (Freeman 
c L. 3-i, .   1972,)* 
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Newborn rats subjected to a battery of stimuli for 20 to 30 minutes 
per day and then killed on the 8th day showed increased numbers of dendritic 
spines per unit length of cortical pyramidal dendrites without apparent change 
in cell body dimensions or in apical or lateral dendritc length.   This increase 
was most apparent in the basilar and oblique branches.   The rapid Golgi 
technique stained more cells per secUon of the brains of stimulated rats. 
The authors,  significantly,  suggest that the cells accepting the stain may be 
those that are functionally involved at the time of tissue preparation (Schaoiro 
and Vukovitch.  1970). 

Anatomical evidence for plasticity in the adult animal is meager 
(Raisman. 1969; 1973; Shepherd. 1974g).   The first author has described 
repair processes in septal nuclei of rats which indicate that establishment of 
new synapses is on a heterosynaptic basis,   "a re-occupation of de-afferented 
sites by local intact terminals. "   He cautions that these experiments do not 
provide any direct evidence for rearrangement of synaptic connections as a 
result of the learning process, only that such rearrangements are possible in 
the adult brain. 

In an excellent review of the morphological correlates of function 
Berry et ai.   (1973) states that if such changes are to play a role in learning 
and memory the "time constant" must be related to, and be compatible with 
consolidation of the trace.   He noted that changes in retinal synapses after 
exposure to light have occurred within 3 minutes, while darkness-induced 
changes are demonstrable after 24 hours.    He lists the factors to be considered 
in assessing tho various time constants as "the site of manufacture of proteins 
lipids. etc.. the distance between this site of synthesis and the site of struc- 
tural change, and the speed at which metabolites can reach this site and be 
incorporated into new membranes.  .  . "   To this one should add the necessity 
of considering periodic fluctuations in thv concentrations and activities of 
the cellular components. 

The anatomical evidence for plasticity in the nervous system is based 
for the most part on studies of the developing brain.   There might be some 
anatomically demonstrable effect oi learning in the adult,  but so far the 
evidence appears to be difficult to interpret.    Plasticity as a feature of the 
learning process in the adult brain may well be demonstrable only on a 
functional level of investigation, be it electrophysiological.  biochemical or 
behavioral.   What is certain is that the temporal aspects of all of 'hese 
measurements must be carefully considered. 

\H 



V.    BIOCHEMISTRY AND CHEMICAL EFFECTS 

Thert is a vast literature on biochemical changes resulting from 
training and the effect of various chemicals on retention of learr^u behavior 
Much of the evidence is difficult to interpret because of the problem in sort-" 
ing out the effects of stimulation and the specific learning correlates.   This 
may be inherently an insoluble problem because surely all learning involves 
stimulation of groups of neurons in a well-defined sequence.   It would none- 
theless be significant if demonstrable intraneuronal biochemical changes were 
shown to result from neuronal activity during learning. 

The biochemistry of learning and memory has been competently and 
thoroughly reviewed (e.g.. Classman, 1969; Classman and Wilson. 1973- 
and Rahwan. 1971).    In addition several compilations of review type articles 
exist (Albers et al.,  1972; Ansell and Bradley. 1973; and Essman and 
Nakajima, 1973). 

Many of the reported results have to do with suppression of protein 
synthesis by drugs such as puromycin. cycloheximide and acetocycloheximide 
All have caused amnesia in various species,  but side effects are difficult to 
iso ate from the memory effect.    Reducing the synthetic rate of any essential 
molecule may impair memory.   The problem is in locating the mechanism 
specific for memory formation    (Dunn and Bondy.  1974).   There may indeed 
be no such specific mechanism. 

Actinomycin-D which inhibits DNA-dependent RNA synthesis has 
often been used to study memory storage.   It has been supposed that this 
action is the reason the agent suppresses long-term memory storage     How- 
ever,  low doses injected bitemporally in mice have little effect on cerebral 
RNA synthesis although they do produce cellular damage and electrical 
abnormalities in the hippocampi as well as interference with long-term 
memory.   These injections were effective if made 3 hours before and up to 
24 hours after training.     These effects are believed to result from  toxi- 

BarolTdes! ^O).^1 ^^ ^ inhibition of Protein synthesis (Squire and 

Cycloheximide which is quite toxic in mice and anisoheximide which 
is relatively nontoxic  at doses inhibiting protein synthesis to the same 
degree in mice,  both affect long term memory,  but the former is more 
effective.   The anamnestic effect is related to the duration of inhibition of 
protein synthesis (Flood etal., 1973).   Cycloheximide apparentlv does not 

mlu^^f n8    IT ^ general aCtiVity:   iniUal »W^ivity within 3 minutes 
minutes    followed by a return to normal in 30 to 40 minutes, then decreased 
activity (Segal   etai..l971). ^n uecreasea 
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u  Al    /fo0^f 0i        ^ost.e^gant work on this subject has been done by 
Hyden (1973)    Pus extensive investigations have involved microdissecHon 
in which neuronal and g)ial elements are separated.   This author stresses 
temporal aspects of synthesis of protein in the brain,  the mutual interrela- 
tionship of neurons and glia.  a change in base ntio* of RNA and the forma- 
tion of brain specific proteir s. one largely glial (S-100) and the other neu- 
ronal,  during the process of learning in animals.   He found that nerve cells 
within the hmbic system increase- protein synthesis at the beginning of train- 
ing   this correlating well with electrical activity described by other authors 
He found neocortical protein synthesis to be inhibited while it was stimulated 
in hippocampus.   The hippocampal S-100 protein was found ,0 separate into 
2 fractions in trained ammals (as opposed to a single electrophoretic fraction 
in controls).   One fraction was associated with excess calcium, an ion which 
can cause conformational changes in that protein.   He regards the selective 
uptake ol calcium in nerrons as having a dual function -- induction of a 
conformational change in a membrane protein (S-100) and increased excit- 
ability -- which   could be the mechanism of translating electrical activity 
into remaining macromolecular patterns and could constitute the identifi- 
cation mechanism.        He suggests that neurons sharing protein patterns of 

no;l^nnrPUfC
f

membraneS WOUld reSp0nd t0 the Hsame si^ls' "   Whether or not signals of frequency appropriate to conformational change in macro- 
molecules could be transmitted at a distance is a debatable matter.   However 
Immunologie and enzymatic factions can be carried out at solid-liquid 
interfaces when a S to 20 nm formvar membrane separates the molecules 
lnvolved if the interaction takes place on an orienting^urface .ThTinter 
action is via specific long-range Van der Waals orienting forces (Rothen. 

cculH JrTn8 0bvi0USlv no ^Hhood that oscillates at such frequencies 
could be linked via nerve impulses.   However, even s at both the pre- and 

^T^^^r10 ^ mediated ^^ betVeen ^nted^ecules 

There is a possible mechanism for inducing conformational change 
in macromolecules via pulsed electrical signals in the frequency ranges 
encountered in the nervous system.   Von Foerster (1969) has made the sugges- 
tion   hat pumping of lattice vibrational states could occur in macromolecuffr 
crystals as the result of trains of pulses of 50 to 180 mv at pulse  rates 
corresponding to the average lifetimes of such states.   This concept deserves 
a closer look.    Von Foerster's development of this notion is based on hfs 

consideration of a molecule as a basic computer element.    Even if one 

TnZZ3 l > ^f^ "^ aS a membra- dement (say in the presyn- 
aptic membrane) and not as an information storage device per se    the 
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energetics of the system are extremely interesting.   The average lifetime of 
a configurational state can be represented by t»t0exp(AE/RT); t0 for the 
states in question is of the order of 3 x 10~16 second which is associated with 
electron orbits within the crystal.    LE, the height of the "energy trough" 
for enzymes and other proteins is around 28 k ;:al/mole or 1.2 electron- 
volts per molecule.    At normal body temperature 31'° K, t works out to 
be 10* to 10B seconds, the average lifetime of a state before it changes 
through quantum-mechanical tunneling.   That is,  3 hour? to about 1 day for 
the lifetimes of these conformational states. 

Another intrinsic set of oscillations is that associated with lattice- 
vibrational states in macromolecules.   These are of the order of 10"* 
seconds (to=10"* second).    AE's are of the oi der of 50 to 180 mv, 
which are in the domain of ordinary action potentials.    Furthermore with 
volleys of impulses separated by intervals corresponding to average life- 
times of these states, pumping could bring the total energy level up to that 
required for a change in configuration.   Not to be taken too literally, but as 
representative figures based on to=10"4sec, we see that at: 

LE = 50 mv   t= 6.5 x 10"* sec 
AE = 100 mv t= 4.2 x 10"3 sec 
AE =180 mv   t= 8.4 x 10-2 sec 

Pulse rates matching the average lifetimes of these states are 1540,  240,  and 
12 per second, well within the range of observed signals in the brain.   Pump- 
ing by trains of such pulses to bring AE up to 1. 2 electron volts per molecule 
would have to last for 0.016,  0.05,  and 0.55 seconds respectively.    (By way 
of reference H-bonds in water have energies of the order of 0.3 electron 
volts per bond,  6 to 7 k calf mole.)   This sort of interaction may play an 
important role especially in the presynaptic region.   The role here of 
vicinal water, highly organized as it is, may be critical (Drost-Hansen, 
1971; 1973).   Onsager (1969) has observed that ice may be a protonic semi- 
conductor device;    vicinal water may act in much the same way. 
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VI.    OSCII LATIONS AND RHYTHMS IN BIOLOGICAL SYSTEMS 

Wiener (1948b) has treated theoretically the concept of feedback 
control of biological systems.   In particular he has considered systems of 
nonlinear oscillators which are characterized by "a discrete set of ampli- 
tudes for which the system will oscillate at a given frequency as well as a 
discrete set of frequencies for which the system will oscillate. " 

Feedback control in the cell is performed generally through the 
actions of regulatory (aiiosteric) enzymes (Monod et al,,  1965) which exercise 
their control at critical points in synthetic chains through repression of 
enzyme synthesis and end-product inhibition of enzyme activity (Datta 1969) 
The dynamics of this type of control are such that there is necessarily a 
continuous oscillatory activity in cellular constituents.    These oscillations 
manifest themselves in various rhythms (Goodwin. 1967).   Goodwin (1963) in 
a remarkable book. Temporal Organization in Celli    has treated this subiec^ 
in great detail.   His mathematical treatment ofl^Tmetabolic chains as well 
as the slower macromolecular syntheses is made possible by considering the 
slow components as constants or as slowly changing parameters in faster 
systems.   The order of magnitudes of the relaxation times derived are of 
interest.    For diffuse interactions and transfer of "small molecules" they 
are about 0. 01 to 0.1 second.   Turnover rates of substrates of intermediary 
metabo ism are about 10 to 10*seconds.   As an example,  glucose 6-phosphate 
TheT" rf;Can i™e

I1
f— 0.05 to 0.8 mM/g Mithin a mVnu e 

These    metabolic oscillators" if coupled by reciprocal feedback inTLd 
chains migh   have longer periods associated with them,   even up to 
5 to 30 minutes.   The "epigenetic" systems,  that is.  synthesis, diffusion and 
interaction of macromolecules. are rather fast in bacteria e.g   5 seconds 
to synthesize a single protein molecule.   This process requires' minutes in 
the higher organisms.    RNA synthesis takes one second in bacteria and about a 
minute in eucaryotic cells.    For enzyme induction in bacteria a typical case 
is the 4-minute time-lag to beginning beta-galactosidas.   activity {r^E. colt 
after beta-galactosidc  is added to the culture.   The rat Hver on the"^h~ 
hand requires 2 hours before tryptophane pyrrolase synthesis begins after 
intravenous administration of tryptophane.    Overall the time constants for 
epigenetic systems are I02 to 10* seconds (1. 5 minutes to about 3 hours)   A 
metabohcally active protein could have an associated relaxation time of 10 
o 20 hours.   Subharmonics of such periods could lead to even longer times 

In his later paper (Goodwin. 1967) the author analyzes a simple fefdbacT 
repression circuit in growing cells.   There is no reason thafthis type of 
analysis would be valia only for growing cells; it is merely a convenLt 

™ h^h hrr Tt "t hiS ^^ With a ^^ SignifiCant Set 0f ^tements 
HP^O     

he^lates -hr
ese concePts to specificity of neural connection during 

development by way of a sequential chemical code based on intrinsic rh^hms 
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in size of metabohc pools in which the specificity is high indeed yet require' 
no involvement of genes at all.   Gander (1967) has described a model o? an 
oscuiatory system containing allosleric enzymes and stresses the concept 
hat such a system could serve as a pacemaker for ot^er coupled systems 

He suggests a view of aging basecJ upon synthesis o^ aberrant allosteric     * 
enzymes    and also presents some general classes of experiments  that cou^d 
be devised on the model. 

Rarondes (1965) has suggested that neuronal plasticity might usefully 
be considered as a manifestation of biochemical regulatory processes anal- 
ogous to those found in bacte.a.   The type of feedback inhibition under con- 
sideration depends on conformation^ changes in existing proteins rather 
than changes in RNA or protein synthesis (Atkinson,  1966).   However 
Mitchison (1969) reviewing patterns of enzyme synthesis in synchronous 

throuZ tCtH        i/1"0! eVidenCe ^ an 0rderly *^Uence of transcription hroughout the .ell cycle,   i. e. a genetically controlled sequence.   These 
Undings, though, may not be applicable to the nondividing neu-on. 

It appears that within the cell there is an adequate biochemical basis 
for generation of rhythmic activity of every conceivable form and with time 
constants from thousandths of a second up to hours or days.    EntrainmenTof 
such rhythms between adjacent cells and between distant cells can be reädüy 
magined.   It may well be that much of the rhythmic activity in the braTn   ^ 

«XU* "lt^cellular syst^s of oscillating pools of metabolites,  inter- 

red thro "H   °th*r VT"*3 0f branChed Synthetic Chains which -e coordin- ated through electrical and humoral signals.   These oscillations may have 

TZ\TgT Peri0dS ^ fraCti0nS 0f a SeCOnd UP t0 hOU- - days^peXs 
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VII.    ENERGY EXPENDITURE IN THE BRAIN 

It is a remarkable fact that the brain which makes up only 2 percent 
Of the body's mass (1400 g out of 70 kg) uses 20 percent of the oxygen requir- 
ed and about the same proportion of the total energy (Dunn and Bondy, 1974). 
The rate of energy production (about 20 watts) is very constant.    It seems to 
make little difference what the brain is doing; daydreaming,  sleeping, or 
intense mental activity all require the same power.   A large proportion 
of this energy consumption has been ascribed to maintenance of ionic con- 
centration gradients across active membranes through ionic pumps.   If 
the sodium pump alone takes 10 to 20 percent of the total energy metabolized 
(Hazlewood, 1972), it seems an unusual feat for an intramembrane system 
confined to what surely is a small parL of the entire cell mass to expend 
this high proportion of energy.   The power to mass ratio must be enormous. 
The purpose here is not to enter the "membrane" versus "association- 
induction" controversy (Ling and Cope, 1969) but rather to direct attention 
to the inside of the cells with their numerous metabolic compartments which 
form, in aggregate,    multicellular compartments.   These latter show a 
constant average pool size which cannot reflect the endogenous fluctuations 
in single cells acting randomly,  but could show si jh fluctuations when the 
cells are synchronized with respect to the particular pool involved. 

The biochemical implications of this view are significant.    If, for 
example, an increase in concentration of a particular molecular species is 
founa in a specific region of the brain at, say, one hour after a learning 
experience, the increase may reflect not a real rise in level of that species 
but merely a synchrony between cells of fluctuations with a long time-con- 
stant.   Thus a sampling over sufficient time, if it had been possible, would 
have revealed a long,  slow rise and fall with an average level exactly the 
same as the level found when the cell population was acting randomly. 

This mechanism may explain many of the experimental results that 
have been reported in which early samples show increases in RNA. while 
samples taken later show no difference or even a decrease.   This picture of 
brain activity would also account for the remarkably constant energy expendi- 
ture of the brain because synchronous activity per se need not raise the 
average metabolic requirements to any great degree.    This may then be the 
reason why chemical samples which, like the Golgi stain, are "snapshots" 
of neural events, reveal great swings in levels of concentration depending 
on their timing in relationship to the particular neural activity that is in 
progress at the moment of tissue death. 
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VIII.    AN OUTLINE HYPOTHETICAL VIEW 

Stimuli from the environment are transduced by receptor organs into 
signals of every conceivable wavef.rm and time dependence^ It is supposed 
hat regardless of mode of transfer between neurons, the cells can respond 

to a wide variety of signals because of the membrane and intracellular 
branched and cross-linked biosynthetic chains controlled by regulatory 
enzymes     These may serve to entrain particular rhythms with time con- 
stants of milliseconds to hours or days.   A sequentially coded set of siLl. 
for example, those produced ty the reticular foLationLrVng arousL   foup^d 
with the input from the periplery may entrain a sequence of similar nature 
n widely separated groups of neurons.    The biochemical substrate of neural 

integration would thus consist of oscillating multicellular metabolic pools 

rP.f ^IH . +
S m f metabolic chain-   The degree to which syntheses prog- 

ress wou d determme how long the "statistical configuration''or "coherent 
pattern of discharge of neurons" lasts (John. 1972).   The process couk 
continue to completion of new protein molecules and new structures a   or 
near synapses, or decay with time over seconds to years. 

hniHc f.
PerhapS the

r Process itself ^ much as the products of the process 
holds the essence of neural integration.    It may be that many of the biochemi- 
cal syntheses in the neuron have no other function than the evanescen   waxSL 
and waning of concentrations of intermediate molecular species     The USX 
bringing into biochemical synchrony,  a synchrony inlsTcZ^ sense'on y 
of large groups of neurons may be the main early events in learning and 
memory consolidation.    Failure to reinforce this process may lead to grad. 
ual desynchromzation and reestablishment of random biochemical actiWtv 
As training progresses, more and more of the switchboard eTp^nt 1    ^' 
come t0 the fore and what was originally a ^^^^^^ 

ens nTghTry nerHrrs might become more fineiy ^ *** *™JX!r cells.   These would be more tightly coupled by actual anatomic channel 
in synapses and in subsynaptic intracellular elements located largely !n Ih. 

ofnotent0 'JT'^ ^^ ^ ^ncHM^ elemenfs 1 y L ^ocket 
of potential biochemical activity to be set in motion when signals suitahlv 
coded in time trigger them into sequential activity * ly 
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IX.    SUGGESTIONS FOR FUTURE RESEARCH 

Further development of this hypothesis will require assembly of 
detaüed.  reliable information on elcotrophysiological.  biochemical,  histo- 
logical and behavioral aspects of learning and memory.   The choic of 
inclusion of supportive reference documents would rest on whethe • or not 
careful timing of the events and the measurements had been perf >rmed. 

There would be little to gain from biochemical examination of gross 
tissue samples.   It is unlikely that new species, or an unusual concentration 
ol molecular species would be observable in such samples.    Effort should 
rather be directed to the temporal pattern of syntheses in specific types of 
neurons.    A common sequence of rise and fall in concentrations of various 
molecules might reveal which brain regions were in biochemical synchrony 
hus extending to slower components the electrophysiological observations 

(such as on evoked potentials) now being made. 

It may be that electrophysiological observations can reveal only the 
pa terns already fixed and that synchronous activicy associated with appar- 
ently random electrical patterns can be sorted out only on a much slower 
time scale.    Perhaps this scale is accessible more to biochemical than to 
electrophysiological techniques. 

^V-^u*81 end 0f the time sPect^^ of neural activities,  some of 
the early biochemical events may be accessible to relaxation technicues 
down to sub-millisecond intervals (Winkler. 19"4).    Immunofluorescent 
studies could reveal biochemical synchronies I! carried out on many 
different brain regions in such a way as to ensure simultaneity of samplinc 
and adequate temporal correlation of the behavioral aspects. amPnne 

Understanding of events at the synaptic cleft is still meager.   There 
is no doubt that;. the 50 nanometer space the water is highly organized and 
cannot be considered in an.  sense as resembling bulk water in it's properties 
Proton jumps,   diffusion" of metallic ions, the degree of incornoration 
of transmitter molecules into the organized spacef ^LZT.TsLce 
through this medium all require much more understanding of water at an 
interface.    Discrete changes in structure with temperature and their 
possible persistence in metastable configurations might be exploited to 
further such understanding. AFiuiiea 10 
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